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Abstract. The time-dependent Schrödinger equation of an ion moving in an asymmetric
Penning trap is solved. Properties of the evolution of squeezed and Schrödinger cat states
in the trap are studied. Analytic expressions for the energy expectation values, dispersions and
correlations of the position and momentum operators of different macroscopic states, solutions
of the time-dependent Schrödinger equation of the trap, are obtained. The probability densities
in coordinate and momentum representations are also given. As an example, the behaviour of
Schr̈odinger cat states of a proton moving in the trap is described numerically.

1. Introduction

Schr̈odinger cat states are quantum superpositions of macroscopically distinguishable states.
They can be produced in quantum optical experiments, as pointed out by Yurke and Stoler
[1]. From a theoretical point of view, they are even and odd coherent states; they were
introduced by Man’ko [2] and studied by Castañoset al [3] for the case of a parametrically
excited generalized harmonic oscillator.

Particle traps permit us to make extremely precise measurements and test the most basic
postulates of modern physics. For example, the production of antihydrogen using ion traps
has been discussed in connection with testing CPT symmetry and the weak equivalence
principle for antiparticles [4]. Experiments have also been suggested to demonstrate that
radiation appears in vacuum in an accelerated reference frame [5, 6]. Amongst the most
interesting recent experimental results, we can mention the creation of Schrödinger cat states
in different types of experiments [7]. Recently, Monroeet al [8] reported the generation of
such a state at the single atom level in a coaxial resonator ion trap.

A relatively simple set-up is the Penning trap, in which charged particles are kept in
the combination of a homogeneous magnetic field and an electrostatic quadrupole potential
[9, 10]. This trap can be modelled by a two-mode symmetric harmonic oscillator in a rotating
frame, a system equivalent to the generalized oscillator [11], which has been studied with
the formalism of linear integrals of motion [12, 13]. It was recently shown that charged
particles in a Penning trap with an asymmetric electrostatic field can be in squeezed states
[14]; in the limit of an axially symmetric trap, the model is equivalent to the generalized
oscillator considered in [11].

The aim of this paper is to study the Schrödinger cat states of a charged particle
in a Penning trap, using the previously mentioned formalism [12, 14]. These states are
superpositions of the time-dependent solutions of the Schrödinger equation that correspond
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to generalized coherent correlated states, which are also superpositions of energy eigenstates.
We study their evolution under the influence of an axially asymmetric electrostatic field,
and find the energy expectation values, and the probability densities, together with the
coordinates and momentum dispersions; numerical results are presented for the physically
realistic case of a proton in the trap. A similar problem for a Paul trap was recently analysed
by Castãnoset al [15].

This paper is organized as follows. In section 2 we describe the asymmetric Penning
trap, find the general solution for the Schrödinger wave equation and calculate analytic
expressions for the energy expectation values with respect to the generalized correlated
states. In section 3 we study even and odd Schrödinger cat states in an asymmetric
Penning trap; we calculate their energy expectation values, dispersions and correlations
for coordinates and momenta, and probability density functions, both in coordinates and
momenta. Numerical results are presented in section 4 for a proton moving in the trap.
Finally, a summary of the results is given in section 5.

2. Invariants of motion and Penning trap

The dynamical system associated to any quadratic Hamiltonian with coordinates and
momentaq̃ = {qi} and p̃ = {pi} admits a solution in the form of invariants of motion
which have the commutation relations of creation and annihilation operators in the quantum
version of the problem (here and in the following a tilde means the transpose of the matrix).
Thus, the time invariant annihilation operator takes the form [16]:

A0(t) = λp(t)p+ λq(t)q (1)

where matricesλp and λq follow from the classical equations of motion [3]; here,A0

and A†0 depend explicitly on time but are constants of motion, they coincide with the
two-dimensional harmonic oscillator annihilation and creation operators at timet = 0.

As a consequence, any quadratic Hamiltonian can be written in the form

H = −h̄
2

2
( Ã0 Ã

†
0 )

(
K L∗

L K∗

)(
A0

A
†
0

)
(2)

whereK andL are complex, Hermitian matrices, respectively.
From the constants of motion it is possible to construct the solutions of the corresponding

quantum problem, that is, solutions of the Schrödinger equation with the Hamiltonian
equation (2). Indeed, the squeezed states are described in coordinate representation by
the wavefunction [16]

ψα(q, t) = h̄−1(2π detλp)
− 1

2 exp

{
−α

†α

2
+ 1

2
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−1
p α

}
× exp
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h̄−1

(
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p λqq + iα̃λ̃−1
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(3)

whereα̃ = {αi} is the multimode field amplitude.
Due to the symmetry between coordinates and momenta, it is clear that the wavefunction

in the momentum representation can be obtained from the corresponding wavefunction in
coordinate representation making the substitutions

q −→ p

λp −→ −λq.
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As a consequence, wavefunctions with different spatial support also have different supports
in momentum representations.

Recalling now thatA0|α〉 = α|α〉, it is easy to obtain the expectation values for the
Hamiltonian with respect to the multidimensional coherent states|α〉:

〈H 〉α = −h̄
2

2
(α̃Kα + α†K∗α∗ + tr(L)+ 2α†Lα). (4)

Now, in the particular case of a charged particle (of massm) in an asymmetric Penning
trap, the Hamiltonian (discarding the harmonic movement with frequencyωz along the
z-axis) can be written in the form (2), with the matrices

K = 1

m
λ∗qλ

†
q +

1

2
ωc(λ

∗
q6λ

†
p − λ∗p6λ†q)+mλ∗p�2λ†p (5)

L = − 1

m
λqλ

†
q +

1

2
ωc(λp6λ

†
q − λq6λ†p)−mλp�2λ†p (6)

where� = diag(ωx, ωy), and6 is the 2×2 symplectic metric. The frequenciesωx andωy
are defined by the expressions

ω2
x,y = 1

4ω
2
c − 1

2(1±D)ω2
z . (7)

Here ωc is the cyclotron frequency [10], andD is a parameter that measures the axial
asymmetry [14].

Equation (2), for the asymmetric Penning trap, must be time independent; therefore
the Hamiltonian itself is a constant of motion and its expectation value with respect to
generalized correlated states is given by

〈H 〉α = h̄ωx
(
r2

1 +
1

2

)
+ h̄ωy

(
r2

2 +
1

2

)
+ h̄ωcr1r2

2
√
ωxωy

×{(ωy − ωx) sin(φ1+ φ2)+ (ωx + ωy) sin(φ2− φ1)} (8)

where we used the polar formαj = rj exp(iφj ), with j = 1, 2 for the state parameters, and
the values of the matricesK andL, given by equations (5) and (6) fort = 0.

In the particular case of a charged particle in a Penning trap, the realistic values of the
frequencies for an electron in the trap are such thatωc � ωz � ωm, whereωm ' ω2

z/2ωc
is the magnetron frequency (these three frequencies are in the ranges of GHz, MHz and
kHz, respectively [10]). In this case, as shown in [14], the squeezing coefficients oscillate
with a period of the order of the magnetron frequencyωm, provided thatωc � ωz � ωm.
This approximation is very good for an electron in the trap, but fails for more massive
particles such as a proton or an ion. In the following, the general case will be studied
without approximations.

3. Schr̈odinger cat states

The normalized coherent states|α〉 are eigenstates of the annihilation operatora:

a|α〉 = α|α〉 (9)

whereα is a complex number anda†a|n〉 = n|n〉, with n = 0, 1, 2, . . .. The even and odd
coherent states|α±〉 are superpositions of the coherent states [2]

|α±〉 = N±(|α〉 ± | − α〉) (10)
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where the normalization constants have the form:

N+ = e|α|
2/2

2
√

cosh|α|2
N− = e|α|

2/2

2
√

sinh|α|2
. (11)

The multimode generalization of the cat states is straightforward [17].
The density functions associated to these wavefunctions are

ρ(±)α (q, t) = |N±|2{|ψα(q, t)|2+ |ψ−α(q, t)|2± ψα(q, t)ψ∗−α(q, t)± ψ−α(q, t)ψ∗α(q, t)}.
(12)

To write down the explicit expression for the density, use equation (3) and the two-mode
generalization of the normalization constant equation (11).

The corresponding expectation values of the Hamiltonian with respect to cat states are
given by

〈H 〉α± = −h̄
2

2
{α̃Kα + α†K∗α∗ + tr(L)+ 21±α†Lα} (13)

where1± is defined as

1± =
{

tanh(α†α) for even cats

coth(α†α) for odd cats.
(14)

These expectation values of the energy of cat states are again time independent and are
given by

〈H 〉α± = h̄ωx(1±r2
1 + 1

2)+ h̄ωy(1±r2
2 + 1

2)+
h̄ωcr1r2

2
√
ωxωy

×{(ωy − ωx) sin(φ1+ φ2)+1±(ωx + ωy) sin(φ2− φ1)} (15)

where again the polar forms forαi are used.
For the Schr̈odinger cat states, the expectation values of the coordinates and momentum

states are obviously zero. As for the dispersions, they are given by the dispersion matrix

σ±(t) = ΣΛ̃Σσ±(0)ΣΛΣ (16)

whereΣ is the symplectic matrix, andσ±(0) is the dispersion matrix of Schrödinger cat
states constructed from standard two-mode coherent states; they are given by the expressions

(σ±pipj )(0) =
√
ωqiωqj

ω0

{
Re [αi(−αj +1±α∗j )] +

1

2
δij

}
(17)
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√
ωqi

ωqj
Im [αi(αj +1±α∗j )] = (σ±qjpi )(0) (18)
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ω0√
ωqiωqj

{
Re [αi(αj +1±α∗j )] +

1

2
δij

}
(19)

with ωq1 = ωx , ωq2 = ωy and

ω2
0 = 1

4ω
2
c − 1

2ω
2
z . (20)
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4. Numerical results

We now study the case of a proton confined in a Penning trap. As typical parameters of
the trap, we take the following values. For the electrostatic potential between the plates:
V0 = 53.1 V, for the characteristic length:d = 0.112 cm; and the constant magnetic field
is taken asB0 = 50.5 kg [10]. These parameters of the trap yield the cyclotronic,ωc, the
magnetronic,ωm, and in directionz, ωz, frequencies

ωc = 483.97 MHz ωm = 4.17 MHz ωz = 63.22 MHz. (21)

Next, the probability densities in coordinate space and dispersions of the positions and
momenta are calculated for two cases: Schrödinger cat states and generalized correlated
states of a proton moving in an asymmetric Penning trap withD = 0.3. In these calculations,
we have used the following units:

[t ] = 4.21× 10−9 s [q] = 1.63× 10−6 cm [p] = 6.48× 10−22 g cm s−1.

(22)

Figure 1. Quadrature dispersions for the generalized correlated state. The dispersions along
the first direction in the coordinates and momentum are plotted, with broken and full curves,
respectively. They are displayed for magnetronic and cyclotronic times. Hereafter, the scales
are those given in section 4.
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4.1. Correlated states

By means of expression (8), the expectation value of the Hamiltonian with respect to
correlated states can be calculated. The minimum energy values for the set of parameter
amplitudes(α1, α2) = (r, r), (r, 0), or (0, r) are associated to the correlated vacuum state,
whereas numerical calculations show that smaller energy values are obtained for correlated
states with amplitude modesα1 = ir andα2 = 0.3, or vice versa, than the correlated vacuum
state.

As discussed in [14], an asymmetry in the electrostatic field in the Penning trap
produces a squeezed state for a particle moving in the trap. An analytic expression was
obtained for the dispersion of the position and momenta of the particle in [14], and an
approximate formula given for the case of an electron. Here we have calculated the
dispersion numerically for a proton. The dispersions of the coordinatex and momentum
px are shown in figure 1. The behaviour of the system is shown in the upper part for
magnetronic times and in the lower part for cyclotronic times. The squeezing phenomenon
in the position variable is clearly present and the dispersions have periodic variations. The
dispersions in the other coordinates and momentum have the same qualitative form and will
not be shown here.

Figure 2. Correlation coefficients between momenta and positions in thex andy directions are
plotted for the state of the proton moving in the asymmetric Penning trap.
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The correlations of the positions and momenta are illustrated in figure 2. They also show
a periodic behaviour around zero. It is worth noticing that the dispersions and correlations
vary periodically over two superimposed timescales: one corresponding to the cyclotron
frequency and the other to the magnetron frequency.

4.2. Schr¨odinger cat states

We now consider the even and odd Schrödinger cat states. In these cases the expectation
value of the Hamiltonian is calculated through expression (15). For the same set of
parameters used in section 4.1, the energy values are always smaller for the even Schrödinger
cat state than for the odd case. However, forα1 = ir and α2 = 0.3, or vice versa, the
energy values, aroundr = 0.3, are smaller for the odd states than for the even states, and
besides havelower energies than the correlated vacuum state.

The quadrature dispersions for these states were calculated for the two-mode field
amplitudesα1 = α2 = 1

3 that fixes the initial positions and momenta. Again there is a
variation of the dispersions of the position and momentum coordinates over the same two

Figure 3. Quadrature dispersion in thex direction for the even Schrödinger, plotted for
magnetronic and cyclotronic times. The parameters of the amplitudes of the state areα1 =
α2 = 1

3 .
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Figure 4. Quadrature dispersion in thex direction for the odd Schrödinger cat state, plotted
for magnetronic and cyclotronic times. The parameters of the amplitudes of the state are
α1 = α2 = 1

3 .

timescales as in the above case. The typical behaviour of the dispersions in thex coordinate
are shown in figure 3 for the even state and in figure 4 for the odd case.

It is also interesting to display the evolution of the probability density in coordinate
space. The cat states are characterized by a superposition of two well-localized probability
densities with an interference term between them. This interference is most conspicuous for
the even state, as it can be seen in figure 5: the two localized states move one in front of the
other, with an interference that blows up periodically each time they come close together.
This behaviour is also evident for the odd state, shown in figure 6; however, in this case the
interference is destructive since the probablity density of this state has a node in the origin.

The above numerical results, with the given parameters, are quite representative of the
general characteristics of the correlated and Schrödinger cat states of the motion of an ion
moving in an asymmetric Penning trap. Further numerical explorations with different sets
of parameters were performed, but they did not show any qualitatively different features;
therefore, they are not presented here.
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Figure 5. Evolution of the probability density in the configuration space of even Schrödinger cat
states of the proton moving in the asymmetric Penning trap. This is plotted for the amplitudes
α1 = α2 = 1.0; starting from the top to the bottom and from the right to the left witht = 1 and
steps of one unit of time.

5. Summary

The present interest in ion traps is well justified by the possibility of making extremely
precise measurements and test many of the fundamental concepts of modern physics. In
this paper, we have shown how a Schrödinger cat state behaves in a Penning trap. For the
expectation value of the energy, for the confinement of a proton, the asymmetry parameter
D does not have an important role. Two-mode amplitudes can be found for which the energy
values are smaller for correlated, even and odd states, than for the correlated vacuum state.

The key feature in the behaviour of an ion in a Penning trap is the fact that there are
essentially two different timescales, corresponding to the magnetron (slow) and the cyclotron
(fast) motion of the particle in the trap. Our numerical calculations show that for an even
or odd superposition, the two states rotate around one another in a stable way, and that the
frequency of this rotation corresponds to the magnetron frequency. For the even state, there
is a very strong interference term which pops up periodically every time the two states get
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Figure 6. Evolution of the probability density in the configuration space of odd Schrödinger
cat states of the proton moving in the asymmetric Penning trap, plotted for the amplitudes
α1 = α2 = 1.0; starting from the top to the bottom and from the right to the left witht = 1 and
steps of one unit of time.

close enough. We have also shown how the dispersions of these superposed states behave in
time: the peculiar feature in this case is the squeezing over the two superimposed timescales
mentioned above. The figures presented here show the essential behaviour. Other values
of the parameters can be worked out, depending on the specific problem, but qualitative
changes are not to be expected. In order to make a comparison with experimental results,
one has to study the interaction of the Schrödinger cat states with an electromagnetic field;
this is an open problem to which we expect the present work to make an initial contribution.
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[12] Castãnos O, Ĺopez-Pẽna R and Man’ko V I 1994 J. Phys. A: Math. Gen.27 1751
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